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a b s t r a c t

Citizen Scientists together with an increasing access to technol-
ogy provide large datasets that can be used to study e.g. ecology
and biodiversity. Unknown and varying sampling effort is a major
issue when making inference based on citizen science data. In
this paper we propose a modeling approach for accounting for
variation in sampling effort due to accessibility. The paper is
based on an illustrative case study using citizen science data
of moose occurrence in Hedmark, Norway. The aim is to make
inference about the importance of two geographical properties
known to influence moose occurrence; terrain ruggedness in-
dex and solar radiation. Explanatory analysis shows that moose
occurrences are overrepresented close to roads, and we use
distance to roads as a proxy for accessibility. We propose a model
based on a Bayesian Log-Gaussian Cox Process specification for
occurrence. The model accounts for accessibility through two
functional forms. This approach can be seen as a thinning process
where probability of thinning, i.e. not observing, increases with
increasing distances. For the moose case study distance to roads
are used. Computationally efficient full Bayesian inference is per-
formed using the Integrated Nested Laplace Approximation and
the Stochastic Partial Differential Equation approach for spatial
modeling. The proposed model as well as the consequences of
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not accounting for varying sampling effort due to accessibility
are studied through a simulation study based on the case study.
Considerable biases are found in estimates for the effect of radi-
ation on moose occurrence when accessibility is not considered
in the model.

© 2020 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the expansion of technology, information and data have become readily available not only
or the scientific community, but also for society in general. Citizen Science (CS), i.e. the engagement
f the public in activities formerly exclusive of trained people in scientific projects, has emerged as a
onsequence, (Newman et al., 2012). The convenience offered by technology has encouraged people
o contribute to different fields of scientific research ranging from social sciences (www.ancientliv
s.org, www.oldweather.org) or astronomy (www.galaxyzoo.org) to biodiversity (e.g. www.artsobs
rvasjoner.no, www.eBird.org and www.iNaturalist.org).
According to the typology of Citizen Science introduced in Strasser et al. (2019), CS projects in

iodiversity are regarded as ‘‘sensing’’ projects. It means that the role of volunteers is to collect
nformation and submit it to a large database. These projects take advantage of the participants
ocal knowledge on their environment and reach high spatial coverage. The impact of these projects
an be measured in the amount of observations that are stored in their databases. For example,
y September 2019, about 1.3 billion of occurrences had been reported in the global biodiversity
nformation facility (GBIF). The Norwegian biodiversity information centre (Artsdatabanken) has
bout 21 million of occurrences reported. Despite being cost-efficient, easy to retrieve and its
assive amount, CS data have some drawbacks. Given their ‘‘open’’ nature, there is no systematic
ampling design to collect data, meaning citizens record observations at convenient sampling
ocations and times. Additionally, no scientific background is required to be part of a CS project,
hich implies that some species may get misidentified, (Kelling et al., 2015).
The differences in knowledge and expertise of participants in CS projects is only one of the

otential sources of bias. As described in Isaac et al. (2014), the biases in the sampling processes
an be classified in four groups: temporal bias, understood as varying activity of observation and
eporting across time; geographical bias, meaning more reports in more convenient locations, (Mair
nd Ruete, 2016); uneven sampling effort per visit and differences in detectability. Preference for
eporting a specific type of species constitutes another typical bias in CS sampling designs. All these
iases yield in uneven sampling effort across space and time. Moreover the sampling process is not
lways independent of the variable intended to be measured or observed, known as preferential
ampling, (Diggle et al., 2010). An issue that is not exclusive to CS records and that needs to be
onsidered when uncertain about the independence between observation and sampling design.
Furthermore, ideally citizens record both locations where species have been observed and

ocations where species have been absent. This type of data is known as presence–absence data.
n this case the locations are fixed and presence or absence of a species is recorded. However, CS
atabases in biodiversity contain mostly presence-only data. Hence, the only information given is
he presence of a species in random locations whereas the rest of the landscape remains unknown.
hey can be actual absences or locations that have not been sampled yet. Then, there is an evident
ecessity of modeling CS data in a way that acknowledges the randomness of the number and
he location of the observations and that accounts for different biases in the underlying sampling
rocess.
The focus of this paper is on presence-only data and geographical bias due to accessibility. A

ommon approach to model this data is turning some of the unobserved locations into pseudo-
bsences, then the available observations could be modeled as presence–absence data, (Ferrier et al.,
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002) and (Barbet-Massin et al., 2012) However, it does not account for the spatial autocorrelation
or presences and absences across space, (Gelfand and Shirota, 2019). Arguably the most common
pproach for modeling presence-only data is Maxent, Phillips et al. (2009, 2006). This is an
lgorithmic strategy that aims to find an optimal species density subject to some constraint. Given
ts nature, Maxent does not account for the uncertainty of the predictions. Furthermore, it provides
he relative chance of finding a species in comparison to other locations rather than a probability
f presence or absence at each location. In Chakraborty et al. (2011) presence-only data is regarded
s a realization of a spatial point process which, for the particular case of CS data, is subject to
egradation. This approach was proven to perform better than Maxent in terms of goodness-of-fit
tatistics in a scenario with biased sampling.
The source of variation in sampling effort targeted in this paper is spatial bias due to differences

n accessibility. It has been discussed in Gelfand and Shirota (2019) and addressed in Monsarrat et al.
2019) that studies historical large mammal records in South Africa where accessibility depends on
roximity to freshwater and European settlements. There, an accessibility index is computed as the
verage of two functions defined as the half-normal function, characteristic of distance sampling.
his functional form is also mentioned in Yuan et al. (2017) as an approach to model the probability
f detection as a function of the perpendicular distance to a transect line segment.
In this paper we aim to emphasize the importance of accounting for differences in accessibility

hen CS data is modeled. We do it by making use of the Bayesian spatial approach proposed
n Chakraborty et al. (2011) and Gelfand and Shirota (2019) to model the intensity of the point
rocess associated to the distribution of a species. It means the observed point process is understood
s the resulting process after the potential point process has been degraded by the probability of
aving access to each location. Our working hypothesis is that the distance to the road system is a
ood indicator of accessibility. Thus, we account for accessibility by making use of two functional
orms introduced in Yuan et al. (2017): (a) the half-normal function that assumes an exponential
ecay of the probability of accessing a location as the distance to the closest road increases and
b) a semi-parametric approach that explains the decay of this probability as a function of a linear
ombination of I-spline basis functions, (Ramsay, 1988). These functional forms are then included
s part of the models that explain the observed intensity. We refer to these models as the Varying
ampling Effort (VSE) model and the Extended Varying Sampling Effort (EVSE) model. A common
oal of ecological studies is to explore the importance of geographical, climatic or biological
uantities that drive the distribution of a species. Hence, we also aim to see how accounting for
ccessibility impacts the parameters estimates in a Bayesian spatial model, changing then the
ay the dynamics of a species is understood. Gelfand and Shirota (2019) uses a Markov chain
onte Carlo (MCMC) sampling for inference, which is computationally expensive. The Integrated
ested Laplace Approximation (INLA), (Rue et al., 2009) is a non-sampling approach to full Bayesian
nference. INLA can also be used for spatial models based on Gaussian Matern Processes using the
tochastic partial differential equation (SPDE) approach, (Lindgren et al., 2011) , also in point process
odeling, (Simpson et al., 2016). We use INLA for inference, and its computational efficiency enable
s to do a simulation study.
We consider an illustrative case study of CS presence data of moose (Alces alces) in the county of

edmark, Norway. Moose is a large ungulate distributed across most of the Norwegian landscape.
t utilizes a wide variety of environments, including forests, wetlands and farmland, (Hundertmark,
016). The species contributes to ecosystem health parameters by providing key ecological pro-
esses such as browsing on both broad-leaved and needle-leaved trees as well as shrubs (for a
eview see Shipley (2010)). Moose survival and fitness are highly determined by competition for
ood, e.g. Messier (1991). Hence, moose tend to avoid areas dominated by steep slopes, deep and
nduring snow cover as well as poor food availability. In order to proxy this knowledge , we use two
xplanatory variables: solar radiation (RAD) and terrain ruggedness index (TRI). Solar radiation has
een shown to influence fine scale movement of moose due to its effects on air temperature, snow
over and plant phenology, (Pomeroy et al., 1998). Moose are more likely to select areas receiving
igher levels of solar energy as snow cover is shallow and plant productivity higher. Ruggedness,
r terrain heterogeneity also has a major role in moose distribution as a high ruggedness increase
heir energy expenditure, (Leblond et al., 2010).
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Fig. 1. Moose observations (red points) and road system (lines) in the county of Hedmark, Norway. Bold lines indicate
main roads.

This paper is organized as follows: In Section 2, the dataset of the case study is introduced and
xplored. In Section 3, models are presented, as well as the inference method and measures for
valuating and comparing them. In Section 4, we perform a simulation study comparing the models
hat account for variation in sampling effort and a model not accounting for it. In Section 5 results
f both the simulation study and the moose case study are shown. The paper finishes in Section 6
ith the discussion of the results and concluding remarks.

. Case study: Moose in Hedmark and exploratory analysis

In this paper we study moose distribution using locations recorded by citizen scientists and
etrieved from GBIF (https://gbif.org). It corresponds to 472 observations product of human ob-
ervation from 2000 to 2019, NBIC (2019b,a), Blindheim (2019) and iNaturalist.org (2019). These
bservations correspond to locations of moose in the county of Hedmark, Norway, see Fig. 1.
urther, we have two explanatory variables available: RAD and TRI. RAD is computed as the yearly
verage of the monthly solar radiation retrieved from WorldClim (http://worldclim.org/version2
, Fick and Hijmans (2017). TRI was obtained from the ENVIREM dataset (https://envirem.github.io
. Both variables are available at approximately 1 km × 1 km resolution, Title and Bemmels (2018).

Our working hypothesis is that spatial variation in sampling effort can be partly explained by
ccessibility due to distance to roads. In order to determine whether or not it happens, we used
he road system of Hedmark retrieved from the spatial crowd-sourcing project OpenStreetMap (ht
ps://www.openstreetmap.org). This dataset includes a detailed network of roads that ranges from
ighways to footways. Fig. 1 shows the roads as well as reported moose presences in Hedmark.
ost of the observations are made in southern Hedmark and near populated zones of the region,
uch as Hamar, Elverum and Kongsvinger, or in zones with many roads.
To explore if the observed locations are more accessible than the mass of locations in the region,

e compare the citizen science dataset that contains the 472 observed points with a grid of about

00 thousand evenly distributed points. We computed the closest distance to the road network for
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Fig. 2. (a) Boxplots of distance to the road system. Left: Dense grid of about 400 thousand points. Right: 472 reports of
moose in Hedmark (b) Relationship between the observed ratio q̂(sd) and the distances to closest road, sd .

oth datasets. The boxplots of these distances for each set of points are displayed in Fig. 2a. 91%
f the observations reported are located less than 500 m away from a road. On the other hand,
he grid has points that are more distant from the road system. The boxplots show that locations
urther away than 1 km are not represented in the observed point pattern. A Kolmogorov–Smirnov
est was performed on the two sets of distances in order determine if these two sets of distances
ollow the same distribution or not. The result (p − value < 2.2e − 16) let us conclude that, as
suspected, the sets of distances do not follow the same distribution. This is an indication of a non-
random sampling process. Following our working hypothesis we explore the relationship between
the distance to the closest road, d(s) and q(s), the probability of retaining a point located at distance
d(s) (i.e. not thinning) in the observed pattern. To proxy q(s), we grouped both sets of distances into
bins, sd, of width 0.25 and for each of them we computed:

q̂(sd) =
p̂obs(sd)
p̂grid(sd)

ith p̂obs(sd) and p̂grid(sd), the proportion of points that are part of the bin sd in the observed
attern and the dense grid, respectively. In Fig. 2b we observe a considerable decrease of q̂(sd)
rom sd = [0, 0.25] to sd = (1.5, 1.75]. After this distance, q̂(sd) becomes 0, except for sd =

(2, 2.25]; (2.5, 2.75]; (5.5, 5.75]} where few observations were reported.
According to the shape of q̂(sd) obtained from our sample, an exponential decay function as the

ne introduced in Yuan et al. (2017) arguably describes well the relationship between d(s) and q(sd).
n addition to it, a semi-parametric approach also presented in Yuan et al. (2017) could be used.
oth approaches are explained in more detail in Sections 3.1.2 and 3.1.3.

. Modeling and inference approach

In this section we introduce three models that will be fitted and compared. They are based on
he specification of a Log-Gaussian Cox Process. The first of them, the naive model, does not account
or any difference in accessibility, while the second and third model account for accessibility as a
otential source of variation in sampling effort. Then, we briefly describe the inference methods we
ill use. Finally, we introduce the criteria to assess and compare these models.
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Fig. 3. (a) Solar Radiation (RAD) and (b) Terrain Ruggedness Index (TRI) in the county of Hedmark, Norway.

3.1. Models

3.1.1. Naive model
The observed data are regarded as a realization of a point process. It means both the number of

oints and their locations are random. The intensity measure, understood as the mean number of
oints per area unit, is the variable we are interested in modeling. In what follows, we will assume
he observed point pattern is a realization of an inhomogeneous Poisson Process (NHPP), Illian et al.
2008), over the region D ⊂ R2. Thus, the number of points in D is assumed to be random and to
ave a Poisson distribution with mean

∫
D λ(x)dx. We assume the point process is a Log-Gaussian

ox Process (LGCP). Hence, λ(s), s ∈ D can be expressed as:

log(λ(s)) = xT (s)β + ω(s) (1)

ith x(s) a set of spatially-referenced covariates and ω(s) a zero-mean Gaussian process that
ccounts for residual spatial autocorrelation between locations in D. For our case study the set of
patial covariates x(s) are: TRI and RAD, displayed in Fig. 3. A flexible family of covariance functions
s the Matérn class:

σ 2

Γ (ν)2ν−1 (κ∥si − sj∥)νKν(κ∥si − sj∥) (2)

with ∥si − sj∥ the Euclidean distance between two locations si, sj ∈ D. σ 2 stands for the marginal
variance, and Kν represents the modified Bessel function of the second kind and order ν > 0. ν is
the parameter that determines the degree of smoothness of the process, while κ > 0 is a scaling
parameter.
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.1.2. Variation in sampling effort (VSE) model
Degeneration of the point process has to be considered in the model. We associate it to a thinned

ntensity. That is, we now assume that the intensity of the observed point process is λ(s)q(s) with
(s) the intensity modeled in the naive model, named in Chakraborty et al. (2011) as the potential
ntensity and q(s) the thinning factor which ranges between 0 and 1, with 0 representing total
egradation and 1 no degradation. In our application, the degradation is associated to accessibility
ased on distances to a road network. Thus, as d(s) approaches 0, q(d(s)) approaches 1.
The way q(s) can be specified is still an open question, and several alternatives are available,

epending on the sources of variation in sampling effort that are considered in the model. For
xample, in the case of moose distribution in Hedmark, q(s) could be associated to accessibility to
he road system, (Gelfand and Shirota, 2019), to populated areas and freshwater, (Monsarrat et al.,
019), or land transformation, (Chakraborty et al., 2011). As pointed out in Yuan et al. (2017), in
ase q(s) is not log-linear, the estimation of the parameters is not part of the latent Gaussian model
ramework of INLA. Thus, following the half normal detection function in distance sampling, (Yuan
t al., 2017), we aim to account for differences in accessibility by making use of the functional form:

q(s) = exp(−ζ · d(s)2/2); ζ > 0 (3)

here ζ is a scale parameter and d(s) is the closest distance from location s to the road system.
hus, the model we propose, which accounts for differences in accessibility is:

log(λ(s)q(s)) = xT (s)β + ω(s) + log(q(s)) (4)

his model requires that the variables that are used to explain q(s), in our application distance to
he road system, are available at every s ∈ D.

.1.3. Extended variation in sampling effort model (EVSE)
Even if the VSE model accounts for variation in sampling effort, the functional form of q(s) does

ot offer enough flexibility in situations with thinning processes that do not follow an exponential
unctional form. A natural, convenient way of overcoming this issue and still keeping a log-linear
elationship between d(s) and q(s), is by means of a non-parametric approach. We can specify
log(q(s)) as a linear combination of basis functions as proposed in Yuan et al. (2017). In order to

uarantee the monotonicity of − log(q(s)), we should use a basis of monotone functions, Bk(s), k =

, . . . , p in the linear combination:

− log(q(s)) =

p∑
k=1

ζkBk(s) (5)

ith ζk a set of parameters constrained to be positive, (Yuan et al., 2017) and (Ramsay, 1988). Since
his specification of q(s) is only implemented in INLA for independent ζk, p should not be more than
or 3. Otherwise the resulting q(s) would not be smooth, (Yuan et al., 2017). A graphical overview
f the relationship between the basis function Bk(s) and q(s) is available in Appendix A.

.1.4. Prior specification
The parameter ν in the Matérn covariance function (2) is fixed to be 1. On the other hand, the

nterest is put on the spatial range ρ and on σ , with ρ related to κ in (2) through ρ =
√
8/κ .

These two parameters are specified by making use of PC priors, (Fuglstad et al., 2019). In this case
we set P(ρ < 15) = 0.05 and P(σ > 1) = 0.05. It means that under this prior specification

standard deviation greater than 1 is regarded as large, while a spatial range less than 15 is
onsidered unlikely. The parameters in β have Normal prior with mean 0 and precision 0.01. Finally,
et ζ = exp(θ ). For the hyperparameter θ a Normal prior distribution with mean 1 and precision
.05 is specified. In (5), let ζk = exp(θk), k = 1, . . . , p. Each θk has a normal prior with mean 1 and
recision 0.05.
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3.2. Inference and computational approach

The models introduced in Section 3.1 will be fitted making use of the Integrated Nested Laplace
pproximation (INLA), (Rue et al., 2009), the SPDE approach, (Lindgren et al., 2011), and the
pproach introduced in Simpson et al. (2016) for fitting spatial point processes.

.2.1. The Integrated Nested Laplace Approximation (INLA)
The traditional approach for performing Bayesian inference for latent Gaussian models is Monte

arlo Markov Chains (MCMC). However, the Integrated Nested Laplace Approximation (INLA), (Rue
t al., 2009), has emerged as a reliable alternative, (Illian et al., 2013; Humphreys et al., 2017) and
Sadykova et al., 2017). While MCMC requires considerable time to perform Bayesian inference for
omplex structures such as those inherent to spatial models, INLA requires less time to do the same
ask since, unlike MCMC which is simulation based, INLA is a deterministic algorithm, (Blangiardo
nd Cameletti, 2015). The aim of INLA is to produce a numerical approximation of the marginal
osterior distribution of the parameters and hyperparameters of the model. In addition to its
omputational benefits, implementing INLA is simple by making use of the R-INLA library.

.2.2. The SPDE approach
A useful and efficient way to represent a continuous spatial process based on a discretely indexed

patial random process is the Stochastic Partial Differential Equation (SPDE) approach, (Lindgren
t al., 2011). This is based on the solution to the SPDE:

(κ2
− ∆)

α
2 (τξ (s)) = W(s) (6)

where s is a vector of locations in R2, ∆ is the Laplacian. ν, κ > 0 and τ > 0 are parameters that
epresent a control for the smoothness, scale and variance, respectively. W(s) is a Gaussian spatial
hite noise process. The solution for this equation, ξ (s), is a stationary Gaussian Field with Matérn
ovariance function (2). This solution can be approximated through a basis function representation
efined on a triangulation of the spatial domain D:

ξ (s) =

G∑
g=1

φg (s)ξ̃g (7)

where G is the total number of vertices of the triangulation, {φg} is the set of basis functions, and
{ξ̃g} are zero-mean Gaussian distributed weights. This way of representing the Gaussian Random
Field has been proven to make more efficient the fitting process. Fig. 4a displays the triangulation
for the moose distribution example.

3.2.3. Approach for modeling LGCPs
The traditional way of fitting point process models is by gridding the space and then modeling

the intensity on a discrete number of cells. However, this approach becomes unfeasible and
computationally expensive as the number of grids increases. Given that gridding the space also
implies approximating the location of the observations, it also represents a waste in information
in contexts such as Citizen Science where the locations of the observations are collected with
considerable precision. Since a better approximation of the continuous random field is achieved
by making the size of the cells as small as possible, lattice-based methods become unfeasible as
stressed in Simpson et al. (2016). The approach there introduced is especially useful in situations
with uneven sampling effort since the resolution of the approximation can be locally adapted in
those regions with low sampling. Some additional details of this approach are now presented.

Let ω(s) be a finite-dimensional continuously specified random field defined as:

ω(s) =

n∑
ωiφi(s) (8)
i=1
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Fig. 4. (a) Triangulation of Hedmark according to the SPDE approach (b) Dual mesh for approximating the likelihood of
he LGCP associated to moose distribution in Hedmark. The points are the locations s̃i in Eq. (10) and the areas of the
olygons are the weights ãi in Eq. (10).

ased on this specification, the likelihood of a LGCP conditional on a realization of ω:

log(π (λ(·)|ω)) = |ω| −

∫
ω

exp(ω(s))ds +

N∑
i=1

ω(si) (9)

an be approximated by :

log(π (λ(·)|ω)) ≈ C −

p∑
i=1

α̃i exp
{ n∑

j=1

ωjφj(s̃i)
}

+

N∑
i=1

n∑
j=1

ωjφj(si) (10)

with ãi and s̃i a set of deterministic weights and locations that can be obtained from a dual mesh
with polygons centered at each node of the mesh. Then, s̃ = {s̃1, . . . , s̃n} are the nodes of the
mesh and ã = {ã1, . . . , ãn} the areas of the polygons linked to each centroid. These polygons are
constructed by making use of the midpoint rule, (Simpson et al., 2016). The dual mesh for our
application is shown in Fig. 4b.

3.3. Model assessment

In order to assess and compare competing models such as the ones we are fitting in upcoming
sections, we employ the Deviance Information Criterion (DIC), (Spiegelhalter et al., 2002), the
Watanabe–Akaike Information Criterion (WAIC), Watanabe (2010), and the logarithm of the pseudo
marginal likelihood (LPML). DIC makes use of the deviance of the model

D(θ ) = −2 log(p(y|θ))

to compute the posterior mean deviance D̄ = Eθ|y(D(θ)). In order to penalize the complexity of the
model, the effective number of parameters,

pD = Eθ|y(D(θ)) − D(Eθ|y(θ)) = D̄ − D(θ̄)

s added to D̄. Thus,

DIC = D̄ + p .
D



10 J. Sicacha-Parada, I. Steinsland, B. Cretois et al. / Spatial Statistics 42 (2021) 100446

c
t
t
m
t
s

C

I
t
e

t
t
ζ

c
t

o
(

W
ζ

The Watanabe–Akaike Information Criterion is based on the posterior predictive density, which
makes it preferable to the Akaike and the deviance information criteria, since according to Gelman
et al. (2014) it averages over the posterior distribution rather than conditioning on a point estimate.
It is empirically computed as

−2
[ n∑

i=1

log
(
1
S

S∑
s=1

p(yi|θ s)
)

+

n∑
i=1

V S
s=1(log p(yi|θ

s))
]

with θ s a sample of the posterior distribution and V S
s=1 the sample variance

Another criterion to compare the models is LMPL,defined as:

LPML =

n∑
i=1

log(CPOi)

It depends on CPOi, the Conditional Predictive Ordinate at location i, (Pettit, 1990), a measure that
assesses the model performance by means of leave-one-out cross validation. It is defined as:

CPOi = p(y∗

i |yf )

with y∗

i the prediction of y at location i and yf = y−i.

4. Simulation studies

Our simulation studies aim to show: (i) the implications of not accounting for variations on
sampling effort when CS data is modeled, (ii) how accounting for at least one source of variation in
sampling effort can contribute to improve the inference made about the point process underlying
the spatial distribution of a species and (iii) see how misspecification of q(s) in the VSE model
an affect the quality of the inference. In order to do it, we make use of the same region map,
he road system in the application, the covariate Solar Radiation (RAD), given its association with
he sampling process (82% of the reports are made in locations whose solar radiation is above the
edian solar radiation of the entire region) and its negative correlation, (−0.43), with the distance

o the road system. Then a zero-mean Gaussian random field with Matérn covariance function is
imulated.
A point pattern whose intensity depends on RAD is simulated. This is specified as a Log-Gaussian

ox Process, Y (s), with log-intensity given by:

log(λ(s)) = β0 + β1RAD(s) + ω(s) (11)

t is simulated with β0 = −4.25 and β1 = 0.82. The parameters of the Matérn covariance associated
o the zero-mean Gaussian field, ω(s), are assumed to be ν = 1, κ ≈

√
8/ρ =

√
8/34, (Lindgren

t al., 2011), with ρ the practical range, and σ 2
= 0.7.

After simulating the LGCP, we thin the point pattern using two functional forms. For the first of
hem a point located at a distance d(s) from the nearest road is retained with probability given by
he half-normal function in (3). We create 4 scenarios based on the value of ζ : scenario 0, when

= 0; scenario 1, when ζ = 1; scenario 2, when ζ = 8 and scenario 3, when ζ = 16. ζ = 0
orresponds to the case with no thinning. The other three values of ζ represent increasing levels of
hinning that result in about 13%, 39% and 50% of observations removed, respectively.

The second functional form is a mix between the half-normal function and a constant probability
f retention. In this case the probability of retaining a point follows the same functional form as in
3) until a distance d1. After this, the probability becomes constant. That is,

q(s, d1) = exp
(

−
ζ

2
d2(s)

)
1[0,d1)(d(s)) + exp

(
−

ζ

2
d21

)
1[d1,∞)(d(s)) (12)

ith d1 = 0.5, three simulation scenarios were created: scenario 4, when ζ = 1; scenario 5, when
= 8 and scenario 6, when ζ = 16.
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(

Fig. 5. (a) Relationship between d(s) and q(s) for the simulation scenarios 0,1,2 and 3 (b) Relationship between d(s) and
q(s) for the simulation scenarios 0,4,5 and 6.

Table 1
Simulation scenarios.
Scenario Thinning ζ d1
0 No thinning 0 –
1 Half-normal 1 –
2 Half-normal 8 –
3 Half-normal 16 –
4 Mixed 1 0,5
5 Mixed 8 0,5
6 Mixed 16 0,5

Fig. 5a displays how the functional form of q(s) in Eq. (3) varies as ζ increases, while Fig. 5b shows
q(s) as a function of d(s) in each of the proposed scenarios when the functional form associated to
the thinning is (12) . The process of simulating a LGCP and thinning it according to ζ and d1 was
made for 100 different simulated point patterns. All the simulation scenarios are summarized in
Table 1.

To assess the performance of each model for each scenario, we simulate 10000 realizations
{θ

p
jkl}, j =, 1 . . . , 10 000, from the posterior distribution of each parameter θ for point pattern

k = 1, . . . , 100 in scenario l = 0, 1, 2, 3, 4, 5, 6. Then, the bias and the Root Mean Square Error
RMSE) for point pattern k in scenario l are computed as:

biaskl =
1

10000

10000∑
j=1

(
θ
p
jkl − θ̃

)

RMSEkl =

√ 1
10000

10000∑
j=1

(
θ
p
jkl − θ̃

)2
with θ̃ the actual value of parameter θ .
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Fig. 6. Boxplots of mean bias (left) and mean RMSE (right) of β1 for all datasets in each scenario (scenarios 0,1,2,3) and
or each model.

. Results

.1. Simulation study

.1.1. Results for half-normal form of q(s)
The point patterns obtained for each of the 100 simulations in each scenario described in

ection 4 were fitted using the naive, the VSE and the EVSE model with p = 3 as suggested in
ection 3. The chosen basis functions are plotted in Appendix B. The results are summarized by
sing measures of performance such as bias, RMSE, already introduced in Section 4, and frequentist
overage.
The parameter β1 is the parameter of our interest. Fig. 6 presents both the mean bias and the

ean RMSE at all simulated datasets for each scenario and model for this parameter. We first notice
hat when there is no thinning (scenario 0) the models perform similarly according to their mean
ias and RMSE. However, as the original process becomes thinned (scenarios 1,2 and 3), the naive
odel shows poorer results than the models that account for variation in sampling effort. In scenario
, for example, for 50% of the simulated datasets the mean RMSE for the naive model exceeds 0.5,
hile for less than 10% of the simulated datasets the mean RMSE is greater than 0.5 for the VSE
nd the EVSE models.
Table 2 introduces the mean bias and RMSE of parameters β0, β1, ρ and σ for the three models.

The only parameters for which the bias and RMSE are not considerably different between the naive
and the other two models are ρ and σ . However, ρ is clearly overestimated by all the models. The
spatial variance and the range are the most difficult parameters to estimate and prior distributions
that provide more information about these parameters may be useful to improve the accuracy of
their estimates, (Cameletti et al., 2019) and (Bakar et al., 2015).

As an additional comparison measure we used the frequentist coverage of the equal-tailed
100(1−α)% Bayesian credible intervals for each parameter. Table 3 presents the frequentist coverage
of the parameter β1 for the three models, the results for the other parameters are available in
Appendix B. The coverage of the spatial parameters does not differ between models and scenarios.
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able 2
ean bias and RMSE for the parameters of the naive, VSE and EVSE models in the 4 scenarios simulated. In parenthesis

he standard deviation of each measure.
Scenario Approach β0 β1 ρ σ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0

Naive 0,132 0,265 0,109 0,223 13,698 17,437 −0,055 0,160
(0,150) (0,083) (0,186) (0,112) (7,994) (7,698) (0,113) (0,054)

VSE 0,187 0,309 0,089 0,223 13,507 17,410 0,349 0,559
(0,357) (0,322) (0,199) (0,114) (8,272) (7,672) (4,016) (3,994)

EVSE 0,192 0,300 0,082 0,213 13,849 17,590 −0,051 0,159
(0,158) (0,099) (0,184) (0,103) (8,019) (7,705) (0,112) (0,053)

1

Naive −0,157 0,285 0,310 0,352 14,480 18,594 −0,033 0,170
(0,154) (0,096) (0,179) (0,154) (8,754) (8,475) (0,127) (0,058)

VSE 0,125 0,277 0,168 0,258 14,420 18,641 −0,049 0,169
(0,165) (0,084) (0,188) (0,128) (8,190) (7,701) (0,121) (0,054)

EVSE 0,121 0,277 0,169 0,258 14,302 18,401 −0,047 0,167
(0,168) (0,081) (0,187) (0,128) (8,394) (7,914) (0,121) (0,056)

2

Naive −0,648 0,685 0,463 0,494 15,187 20,263 −0,022 0,179
(0,166) (0,162) (0,187) (0,177) (9,211) (9,121) (0,129) (0,057)

VSE 0,025 0,253 0,179 0,276 15,593 21,463 −0,075 0,190
(0,163) (0,075) (0,196) (0,137) (10,625) (12,145) (0,131) (0,058)

EVSE −0,007 0,254 0,182 0,278 14,803 20,063 −0,074 0,193
(0,166) (0,076) (0,196) (0,138) (12,403) (13,296) (0,149) (0,069)

3

Naive −0,890 0,918 0,503 0,534 14,856 20,600 −0,016 0,183
(0,168) (0,167) (0,181) (0,174) (10,104) (10,055) (0,129) (0,055)

VSE −0,025 0,252 0,161 0,271 15,371 22,397 −0,094 0,203
(0,158) (0,067) (0,193) (0,130) (10,847) (11,051) (0,135) (0,064)

EVSE −0,068 0,259 0,164 0,272 15,174 20,900 −0,087 0,195
(0,160) (0,079) (0,194) (0,131) (14,158) (13,846) (0,151) (0,077)

Table 3
Frequentist coverage of the equal-tailed 95% Bayesian credible interval for β1 . In
parenthesis, mean length of the intervals.
Scenario Model

Naive VSE EVSE

0 0,76 (0,49) 0,76 (0,48) 0,79 (0,49)
1 0,43 (0,55) 0,73 (0,54) 0,72 (0,54)
2 0,19 (0,63) 0,81 (0,61) 0,79 (0,61)
3 0,16 (0,67) 0,81 (0,64) 0,81 (0,64)

It is worth noting that smaller coverages are obtained for β0 for the naive model in comparison to
the other two models as the parameter ζ increases.

The model comparison methods based on the deviance and on the predictive distribution as the
ones introduced in Section 3 are used to compare the results of the three models. In the scenario
with ζ = 0 the naive model is the true model and, as expected, it performed better than the other
two models in about 40% of the simulated point patterns. This situation changes as the thinning
parameter increases, the models that account for variation in sampling effort perform better than
the naive one for all the simulated datasets.

5.1.2. Results for mixed functional form of q(s)
As explained in Section 4, we now thin differently the simulated point processes. The function

q(s) is now half-normal up to a distance d1, where it becomes constant. We fit the resulting
bservations using the same three models. Fig. 7 displays the mean bias and RMSE for the three
odels in each scenario.
In scenarios with low values of the thinning parameter (ζ = 0, 1), there are not large differences

in terms of bias and RMSE for the posterior median of β for the three approaches. On the other
1
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Fig. 7. Boxplots of mean bias (left) and mean RMSE (right) of β1 for all datasets in each scenario (scenarios 0,4,5,6) and
or each model.

and, as ζ increases the differences between the three models become evident. While the EVSE
odel produces mean bias and RMSE consistent with scenarios of low thinning, the mean bias and
MSE of the VSE model increase, but not as much as for the naive model. Table 4 has the mean bias
nd RMSE of the parameters β0, β1, ρ and σ .
The same pattern described for the bias and RMSE of the parameter β1 occurs for the intercept

β0. In contrast, for the spatial hyperparameters, ρ and σ , there are not considerable differences in
ean bias or RMSE between the three models. As made for scenarios 0,1,2 and 3, the frequentist
overage of each parameter in each scenario was computed. In Table 5, the frequentist coverage of
1 is reported. The frequentist coverage for the other parameters is available in Appendix B.
The frequentist coverage of β1 is very similar between the three models when the thinning is

oderate, i.e. scenarios 0 and 1. However, as more observations are removed from the original point
attern, the differences between the models become larger, with the EVSE model having about 80%
f coverage, while the VSE model has less than 70% and the naive model less than 60%. Finally, in
erms of DIC, WAIC and CPO, the EVSE model outperforms the other two models when the thinning
f the model is high.

.2. Results for moose distribution in Hedmark application

The models introduced in Section 3 are fitted for the dataset introduced in Section 2 . Table 6
eports the posterior mean and standard deviation of the parameters for each of these models.
errain Ruggedness Index (TRI) is negatively related to the intensity, while Solar Radiation (RAD)
as positive association with it for all the models. This suggests, as expected, that moose occurrences
re more likely found in locations with higher solar radiation and where the terrain is less rough .
he variability and range of the Gaussian field have right skewed posterior distributions based on

heir posterior medians and means. There is a difference in the posterior mean of RAD coefficient



J. Sicacha-Parada, I. Steinsland, B. Cretois et al. / Spatial Statistics 42 (2021) 100446 15

T
M
t

t
t

p

A
s
l
s
c
t

o
m
d
r
e

able 4
ean bias and RMSE for the parameters of the naive and the VSE model under the 3 scenarios simulated with mixed

hinning. In parenthesis the standard deviation of each measure.
Scenario Approach β0 β1 ρ σ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

4

Naive 0,059 0,244 0,132 0,235 13,749 17,640 −0,056 0,163
(0,151) (0,068) (0,188) (0,117) (8,344) (8,035) (0,115) (0,054)

VSE 0,088 0,255 0,117 0,229 13,793 17,696 −0,057 0,163
(0,157) (0,073) (0,188) (0,112) (8,311) (7,952) (0,114) (0,054)

EVSE 0,142 0,277 0,097 0,221 14,045 17,923 −0,051 0,161
(0,162) (0,086) (0,187) (0,107) (8,377) (8,050) (0,115) (0,054)

5

Naive −0,369 0,427 0,265 0,321 14,110 18,823 −0,062 0,172
(0,158) (0,137) (0,191) (0,155) (8,378) (8,040) (0,118) (0,055)

VSE −0,264 0,348 0,207 0,284 14,344 19,049 −0,067 0,172
(0,167) (0,128) (0,190) (0,139) (8,121) (7,772) (0,116) (0,053)

EVSE −0,047 0,248 0,132 0,245 14,403 19,027 −0,068 0,172
(0,162) (0,077) (0,191) (0,119) (8,134) (7,758) (0,117) (0,055)

6

Naive −0,733 0,763 0,391 0,428 13,587 19,145 −0,044 0,177
(0,169) (0,167) (0,184) (0,171) (9,549) (9,338) (0,124) (0,055)

VSE −0,465 0,514 0,247 0,315 14,155 19,905 −0,071 0,181
(0,184) (0,167) (0,184) (0,145) (9,629) (9,432) (0,120) (0,056)

EVSE −0,147 0,281 0,145 0,258 14,607 20,545 −0,085 0,189
(0,164) (0,103) (0,191) (0,126) (9,920) (9,546) (0,126) (0,063)

Table 5
Frequentist coverage of the equal-tailed 95% Bayesian credible interval for β1 . In
parenthesis, mean length of the intervals.
Scenario Model

Naive VSE EVSE

0 0,76 (0,49) 0,76 (0,48) 0,79 (0,49)
4 0,72 (0,50) 0,76 (0,50) 0,77 (0,50)
5 0,53 (0,56) 0,66 (0,56) 0,81 (0,56)
6 0,36 (0,62) 0,63 (0,62) 0,82 (0,61)

between the models. It is larger when differences in accessibility are not considered in the model.
In addition to it, both parameters associated to the Matérn Gaussian field have lower posterior
medians for the models that account for variation in sampling effort.

RAD is the most influential parameter for the three models. We see from Fig. 8 and Table 6 that
he posteriors of this parameter shift considerably between the models. While the naive model has
he largest posterior mean for RAD, the EVSE model has the smallest posterior mean.

The parameter ζ in the VSE model with posterior median 0.87 indicates that the observed point
attern is a thinned version of the real one, while the posterior medians of ζ1, ζ2 and ζ3 seem to give

more weight to the first basis function. The basis functions used for modeling q(s) are presented in
ppendix C. Fig. 9 shows the estimated relationship between distance (in kilometers) to the road
ystem and q(s) for the VSE and the EVSE models. According to the results of the VSE model a point
ocated more than 3 km away from the road system can be regarded as inaccessible for citizen
cientists. On the other hand, the EVSE model does not consider any location as inaccessible for
itizen scientists. Instead, it assigns constant q(s) ≈ 0.05 for locations more than 1.5 km away from
he nearest road.

Fig. 10 displays the map of differences in posterior median and standard error of the logarithm
f the intensity between the EVSE and the naive model. The maps with the differences in posterior
edian and standard error between all the models are available in Appendix C. The largest
ifferences occur in zones that are distant to the nearest road and that have no occurrences of moose
ecorded. These places have lower solar radiation than the rest of the region and have considerable
levation in some locations. For the zones that are more observed, accounting for differences in
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orway.

EVSE

975q Mean Sd 0.025q 0.50q 0.975q

4,14 −4,17 0,20 −4,57 −4,17 −3,77
0,04 −0,16 0,08 −0,32 −0,16 −0,01
1,10 0,57 0,17 0,23 0,57 0,91
1,33 – – – – –

55,74 36,45 7,04 25,26 35,52 52,78
1,34 0,99 0,12 0,78 0,98 1,26

2,79 0,35 2,20 2,75 3,57
0,09 0,14 0,00 0,04 0,45
0,09 4,32 0,00 0,03 0,51
Table 6
Posterior summaries of the parameters of the naive and the VSE model for the moose presence data in Hedmark, N
Parameter Model

Naive VSE

Mean Sd 0.025q 0.50q 0.975q Mean Sd 0.025q 0.50q 0.

Intercept −4,87 0,23 −5,32 −4,87 −4,41 −4,56 0,21 −4,97 −4,56 −

TRI −0,20 0,08 −0,35 −0,20 −0,04 −0,20 0,08 −0,35 −0,20 −

RAD 1,01 0,19 0,64 1,01 1,38 0,73 0,18 0,37 0,73
ζ – – – – – 0,88 0,21 0,52 0,87
ρ 39,78 9,06 26,14 38,32 61,37 37,73 7,68 25,88 36,59
σ 1,12 0,16 0,85 1,10 1,48 1,04 0,13 0,81 1,03
ζ1 – – – – – – – – – –
ζ2 – – – – – – – – – –
ζ3 – – – – – – – – – –
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l

Fig. 8. Posterior density of RAD for the three models.

Fig. 9. Estimated relation between distance to the road system, in kilometers, and the probability of having access to
ocation s.

accessibility does not affect the posterior median intensity and the uncertainty. The uncertainty is
smaller for the EVSE model in most of the locations, except for some that include bodies of water
such as lakes Mjøsa and Femun and national parks like Forollhogna national park.
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Fig. 10. (a) Differences in posterior median intensity and (b) differences in standard error of the posterior median intensity
btained through the VSE model and the naive model. In (a) the two squares represent the zones that are focused in
ig. 11 (south of Hedmark) and 12 (north of Hedmark).

Table 7
Comparison criteria for the naive and VSE model fitted to moose location reports.

Model

Naive VSE EVSE

DIC 4377,51 4344,90 4265,77
WAIC 4505,36 4471,39 4400,91
LPML −2467,61 −2446,98 −2428,182

The magnitude of the differences in the posterior median intensity between the VSE and the
aive model is lower than between the EVSE and the naive model. The places with the highest
ifferences in intensity and uncertainty are the same as between the EVSE and the naive model.
he differences between the VSE and the EVSE model are considerably small. The three models are
ompared by making use of the DIC, the WAIC and the LPML. Table 7 introduces the value of each
riterion for each model.
For the case of moose in Hedmark the results in Table 7 indicate that accounting for variation

n sampling effort represents an improvement in terms of goodness of fit since both the DIC and
AIC are smaller, and the LPML is larger for the VSE and the EVSE model, with the latter showing
etter results in this sense than the former model.
Now we will focus on two specific zones of Hedmark to see with more detail how the posterior

edian and its associated uncertainty vary between the models. The two zones are bounded by a
0 km × 30 km square and are highlighted in Fig. 10. The first zone is located on the southern half

f Hedmark between Kongsvinger and Hamar. It is accessible only through service roads, which are
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Fig. 11. Posterior median intensity (top) and associated standard error (bottom) for the naive model (left), the VSE model
middle) and the EVSE model (right) in zone 1.

ot as visited as the main roads of the region, while the second square corresponds to one of the
ost distant zones of the region, which is located on the northern border of Hedmark. For zone
the posterior median intensity and its associated standard error for all the models are displayed

n Fig. 11. The posterior median intensity is similar for the three models as well as the associated
ncertainties. Given that the zone is regarded as highly accessible, considerable differences are not
xpected. In contrast, for zone 2 the EVSE model increases the intensity in most locations compared
o the other two models. In terms of uncertainty the three models produce similar results. However,
t becomes larger in some few zones under the VSE model, see Fig. 12.

. Discussion and conclusions

The main goal of this paper was to highlight the importance of accounting for sources of variation
n sampling effort for CS data. Bayesian spatial models that account for variation in sampling effort
y including proxies for external processes that degrade the intensity of the point process have
een introduced.
This paper focused on differences in accessibility across space. In the simulation studies per-

ormed in Section 4, we created scenarios where the only source of degradation for the actual point
attern was the distance to the nearest road. Two of the functional forms presented in Yuan et al.
2017) were used to link it to the intensity of the point pattern. The first of them is the half-normal
unction, characteristic of distance sampling. The second one is a function of a linear combination of
set of monotone functions with strictly positive coefficients. The aim of ecological studies is often
o learn about the effect of covariates. The results of both the simulation study and the real data
pplication suggest that in situations with some evidence of uneven sampling effort accounting
or differences in accessibility improves performance indices, such as bias and RMSE, and model
election indices, such as DIC, WAIC and LMPL. In the scenario with no thinning on the point pattern
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Fig. 12. Posterior median intensity (top) and associated standard error (bottom) for the naive model (left), the VSE model
middle) and the EVSE model (right) in zone 2.

ue to variation in sampling effort, we found that including a term that accounts for it does not affect
he quality of the inference. Furthermore, differences in the covariates posterior summaries in the
imulation study showed that in cases with sampling biases the effect of an explanatory variable
ay be incorrectly estimated if they are not considered in the model. It is also important to note

hat the VSE model was proved not robust to misspecification of the relationship between d(s) and
q(s) in scenarios with considerable thinning.

In our case study we focused on two zones of Hedmark. The large difference in intensity between
the naive and the other two models in Zone 2 shows how the models that account for variation
in sampling effort regard some locations on the west of this zone as possibly thinned given that
they are located above 2 km away from a road and their geographical characteristics make them
suitable for moose presences. The differences and the uncertainty on the north side indicate a
need for increased sampling effort in this region, marking the area around Forollhogna national
park. This area is one of the few mountainous areas in Norway with relatively gentle slopes and is
therefore called the ‘‘friendly mountains’’. Moose occasionally passes through this area, however,
only few CS observations have been made so far which might partly be due to a low accessibility
and therefore low CS activity. In contrast, the road network in zone 1 is rather dense. Therefore, the
values of q(s) are estimated to be relatively high and the model assumes high CS activity in this area.
However, the road network here is mainly composed of service roads and small tracks. Therefore,
no CS observations of moose in this area might be a result of a low visiting rate of people rather
than moose being absent. However, we only accounted for differences in accessibility of sampling
locations in space, therefore, the habitat is predicted to be not suitable, which seems to be wrong
from an ecological perspective. Accounting for differences in visits of sampling locations in time,
for instance by using spatially refined information on type of road or population data could further
increase modeling performance. The results highlight, that not only accessibility (e.g. roads) are
important features for quantifying preferential sampling in CS data, but also how frequent sampling
sites are being visited. Small service roads and hiking tracks are likely to have a lower turnover of
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Fig. A.13. Illustration of the relationship between the basis functions and q(s) in the EVSE model. Left, basis functions
Bk(s), k = 1, . . . , 5. Middle, weighted basis functions by the coefficients ζk, k = 1, . . . , 5 (gray); linear combination of the
eighted basis functions (solid, blue). Right, estimated q(s) computed as Eq. (A.1).

isiting people than larger roads, and hence, CS more frequently register observations close to larger
oads than close to small and remote roads.

An important part of the VSE and the EVSE models are the parameters ζ and ζk, k = 1, . . . , 3,
hich are necessary to determine to what extent the differences in accessibility affect the observed
rocess. Interpreting and including them in the model is more difficult for the EVSE model given
hat the basis functions need to be chosen. The prior specification of the parameters that are part
f the spatial Gaussian field ω(s) is a complex task in spatial statistics. In this paper PC priors were
sed as a way to incorporate prior knowledge about these parameters in a straightforward way.
lternative prior specifications using PC priors are introduced in Sørbye et al. (2019).
The VSE and EVSE models are a first step for modeling CS data in a way that accounts for its

nherent sources of bias. More effort is required for e.g. extending the sampling effort model to more
uantities (e.g. cell phone coverage or geographical parameters). Extending the VSE and the EVSE
o more spices would be an interesting approach for learning more about citizen science sampling
ffort in general.
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ppendix A. Illustration of the EVSE model

In the EVSE model we assume

q(s) = exp
(

−

p∑
k=1

ζkBk(s)
)

(A.1)

That is, q(s) is assumed as a function of a linear combination of p basis functions Bk(s), k =

, . . . , p. As mentioned in Section 3, Bk(s), k = 1, . . . , p are a set of monotone nondecreasing
unctions . In addition to it, the coefficients ζk, k = 1, . . . , p are constrained to be positive in order
o guarantee monotonicity, (Yuan et al., 2017) and (Ramsay, 1988). Fig. A.13 illustrates, similarly as
ade in Yuan et al. (2017), how the relationship between these basis functions and q(s) works .
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Fig. B.14. Basis functions used to fit the EVSE model in the simulation study.

Table B.8
Frequentist coverage of the equal-tailed 95% Bayesian credible interval for all the
parameters in the simulations. In parenthesis, mean length of the intervals.
Parameter Scenario Model

Naive VSE EVSE

β0

0 0,93 (0,74) 0,91 (0,74) 0,85 (0,75)
1 0,92 (0,79) 0,92 (0,78) 0,94 (0,77)
2 0,09 (0,83) 0,99 (0,8) 0,99 (0,8)
3 0 (0,85) 0,99 (0,8) 0,99 (0,8)
4 0,97 (0,75) 0,95 (0,75) 0,92 (0,75)
5 0,53 (0,77) 0,73 (0,77) 0,98 (0,76)
6 0,01 (0,8) 0,35 (0,79) 0,94 (0,78)

β1

0 0,76 (0,49) 0,76 (0,49) 0,79 (0,49)
1 0,43 (0,55) 0,73 (0,54) 0,72 (0,54)
2 0,19 (0,63) 0,79 (0,61) 0,79 (0,61)
3 0,16 (0,67) 0,81 (0,64) 0,81 (0,64)
4 0,72 (0,5) 0,76 (0,5) 0,77 (0,5)
5 0,53 (0,56) 0,66 (0,57) 0,81 (0,56)
6 0,36 (0,62) 0,63 (0,62) 0,82 (0,61)

ρ

0 0,75 (39,88) 0,73 (39,56) 0,7 (39,96)
1 0,72 (42,94) 0,75 (43,23) 0,72 (42,21)
2 0,79 (49,35) 0,74 (47,08) 0,74 (47,08)
3 0,87 (52,19) 0,73 (47,15) 0,73 (47,15)
4 0,75 (40,67) 0,75 (40,75) 0,72 (40,88)
5 0,8 (45,67) 0,79 (46,15) 0,7 (45,57)
6 0,88 (49,07) 0,87 (50,96) 0,68 (52,26)

σ

0 0,87 (0,43) 0,86 (0,43) 0,88 (0,43)
1 0,92 (0,47) 0,9 (0,46) 0,89 (0,45)
2 0,92 (0,51) 0,73 (0,44) 0,73 (0,44)
3 0,94 (0,54) 0,74 (0,43) 0,74 (0,43)
4 0,87 (0,44) 0,87 (0,44) 0,87 (0,44)
5 0,88 (0,46) 0,88 (0,46) 0,82 (0,46)
6 0,91 (0,5) 0,88 (0,49) 0,76 (0,5)

Appendix B. Simulation study: Extra tables and figures

See Fig. B.14 and Table B.8.
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A

Fig. C.15. Distance to the nearest road for all locations in Hedmark.

Fig. C.16. Basis functions used to fit the EVSE model for the real dataset application.

ppendix C. Moose in Hedmark application: Extra figures

See Figs. C.15–C.17.
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Fig. C.17. Differences in posterior median (top) and standard deviation (bottom), in log-scale, between the naive and the
SE model (left) and between the VSE and the EVSE model (right).
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